EO

Op brein geïnspireerd netwerk herkent patronen met AI

16 januari 2020 om 13:21 uur

Een ongeordend netwerk dat goed is in het herkennen van ordelijke patronen. Het klinkt tegenstrijdig, maar het benadert de manier waarop ons brein patronen herkent. Onderzoekers van de TU Eindhoven en Universiteit Twente hebben zo’n ‘brain-inspired’ netwerk ontwikkeld. Het silicium geheel werkt bij kamertemperatuur en maakt gebruik van materiaaleigenschappen die elektronica-ontwerpers bij voorkeur omzeilen.


De onderzoekers publiceren erover in Nature.

Ons brein is ongelofelijk goed in het, in één oogopslag, herkennen van bijvoorbeeld beelden of patronen. Artifical Intelligence (AI) doet dat soms al net zo goed of beter, maar verbruikt hiervoor wel veel meer energie dan het brein, dat het met 20 Watt doet. De halfgeleiderindustrie laat zich daarom ook steeds vaker inspireren door het brein, bijvoorbeeld door neuronen na te bootsen in elektronica of in software. Maar voor het nabootsen van één enkel neuron - ons brein heeft daarvan tientallen miljarden - zijn dan wel honderden of duizenden transistoren nodig.


Tegenover dat grote oppervlak staat natuurlijk de voortschrijdende miniaturisatie, maar ook die loopt tegen fysische grenzen aan. Het ‘disordered dopant network', dat nu wordt gepresenteerd, is een heel andere benadering, die ook nog eens tegen de intuïtie ingaat. Het maakt geen gebruikt van vooraf ontworpen neuronen, maar gebruikt materiaaleigenschappen om tot een oplossing te komen. Deze ‘evolutie' is energiezuinig en kan ook op een heel klein oppervlak.


‘Doping', in het Nederlands ‘doteren', is hier het sleutelwoord. Dit is het opzettelijk aanbrengen van onzuiverheden in de kristalstructuur van silicium, om een goedwerkende transistor te maken. Hiervoor wordt vaak het materiaal boor gebruikt. De hoeveelheid boor moet groot genoeg zijn om de transistor goed te laten werken. Bij kleinere hoeveelheden gaan verschijnselen optreden die een chip-ontwerper het liefst vermijdt.

 

Hoppen

En van uitgerekend díe verschijnselen maakt het nieuwe netwerk gebruik. Het aantal boor-atomen is zo klein dat elektronen van het ene booratoom naar het andere ‘hoppen'. Dit heeft overeenkomsten met de manier waarop, in ons brein, neuronen met elkaar verbinding zoeken om een taak uit te voeren.
In het Twents-Eindhovense experiment wordt het netwerk ‘gevoed' met 16 patronen. Zonder dat je vooraf weet wat het netwerk gaat doen, levert het voor elk van de 16 een signaal. Met deze 16 basispatronen kun je vervolgens bijvoorbeeld een collectie handgeschreven karakters herkennen met grote nauwkeurigheid. De eerste versie van het netwerk is 300 nanometer in doorsnee en bevat ongeveer 100 booratomen. Het verbruik is ongeveer een microWatt (een miljoenste Watt). Het is de eerste bouwsteen van een groter netwerk, voorzien de onderzoekers.

 

Waarneming en herkenning

‘Brein-geïnspireerd' betekent ook dat het systeem niet, zoals de klassiek opgebouwde computer, voortdurend data heen en weer transporteert tussen processor en geheugen. Ook ons brein kent dit onderscheid niet. Het netwerk is daardoor inzetbaar in krachtige lokale toepassingen. Een autonoom rijdende auto, bijvoorbeeld, moet heel veel beslissingen nemen op basis van waarneming en herkenning. Daarvoor moet de auto een heel krachtige computer aan boord hebben of breedbandig kunnen communiceren met een computersysteem op afstand. Het nieuwe netwerk kan helpen om de herkenning ‘lokaal' te houden en niet in de ‘cloud'. De autoindustrie heeft daarom al belangstelling getoond voor de nieuwe benadering.


Het onderzoek is uitgevoerd in het Center for Brain-Inspired Nano Systems (BRAINS) van de Universiteit Twente, een multidisciplinair centrum dat in 2019 is geopend. De groepen NanoElectronics (MESA+ Instituut) en Programmable Nanosystems (Digital Society Institute) van de UT hebben ook samengewerkt met het Center for Computational Energy Research van de TU Eindhoven. Het is mogelijk gemaakt dankzij financiering door de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

 

Gerelateerd nieuws

Kogelvrije polymeerblokjes

Kogelvrije polymeerblokjes

Onderzoekers van de Rice University Brown School of Engineering in Houston (VS) hebben kubussen van roosterpolymeer ontwikkeld die de kracht van een kogel en andere projectielen kunnen weerstaan.

En kwantumtransistoren maken we van... germanium!

En kwantumtransistoren maken we van... germanium!

Transistoren op basis van germanium kunnen berekeningen uitvoeren voor de toekomstige kwantumcomputer. Met deze ontdekking van het team van Menno Veldhorst (QuTech) staat de transistor, die sinds zijn uitvinding in de…

Het kruipen van zout beter begrepen

Het kruipen van zout beter begrepen

Als zout water verdampt kan het zout kristalliseren en over grote afstanden ‘kruipen’. Dit effect, dat grote problemen veroorzaakt in bijvoorbeeld elektronica buitenshuis, werd in detail onderzocht door een team van…

Webshop

webshop

 

Gratis nieuwsbrief

EOL

 

Focus op

ABB BV
ABB BV

Machineveiligheid, systemen en componenten

B&R Industriële Automatisering BV *
B&R Industriële Automatisering BV *

Perfection in Automation

Elobau Benelux BV *
Elobau Benelux BV *

creating sustainable solutions

Pilz Nederland
Pilz Nederland

Voor industriële (veilige) automatiseringsoplossingen

Ringspann Benelux BV
Ringspann Benelux BV

Partner in aandrijf- en opspantechniek

Rotero Holland BV
Rotero Holland BV

Stappenmotor - Servomotor - Elektro Magneet

Download gratis engineering boeken

A gratis boeken downloaden

 

Agenda

28 januari 2020, D&F kantoor Breda

SIL & PL Specialist, machine safety met TÜV persoonscertificaat

28 jan, 04 feb, 18 feb, 03 mrt, 10 mrt en 24 mrt 2020 Examen: 31 maart 2020

28 januari 2020, Den Bosch

Productie Proces Automatisering event

Het Productie Proces Automatisering event richt zich op de productie- en procesindustrie, machinebouwers,...

30 januari 2020, Amsterdam

The Things Conference

Join The Things Conference to speed up your LoRaWAN development process.

Meer agendapunten »