EO

Graphene tunnelling junctions: beyond the breaking point

03 oktober 2018 om 11:20 uur

Molecular electronics is a burgeoning field of research that aims to integrate single molecules as active elements in electronic devices. Obtaining a complete picture of the charge transport properties in molecular junctions is the first step towards realizing functionality at the nanoscale. Researchers from Delft University of Technology have now studied the charge transport in a novel system, the ‘graphene mechanical break junction’, which for the first time allowed direct experimental observation of quantum interference effects in bilayer graphene as a function of nanometer-displacements.


This new platform could potentially be used for electronic fingerprinting of biomolecules, from DNA to proteins, which in turn can have important implications for the diagnosis and treatment of diseases. The research was partly funded by the Graphene Flagship.

 

Nanogaps separating two electrodes are envisaged as the basis for the next generation of sensing technologies. The aim is to exploit quantum electron tunneling as the sensing principle, in which the electronic structure of the target molecule trapped in the nanogap is directly probed. Graphene, a monolayer of carbon atoms in a hexagonal lattice, combines many of the requisites for an electrical sensor material: high conductivity, atomic thinness, flexibility, chemical inertness in air and liquid, and mechanical strength, as well as its compatibility with standard lithographic patterning techniques.

 

At the Kavli Institute of Nanoscience in Delft, a research group is developing robust graphene-based mechanically controlled break junctions (MCBJs), which allow the formation of a size-adjustable tunnelling gap at the sub-nanometre scale, i.e. the size can be tailored to the size of the biomolecule to be probed.

 

Mind the gap

The MCBJ experiment is conceptually very simple. The device consists of a graphene bowtie structure supported on a flexible metal substrate. The substrate is gradually bent, causing stretching of the graphene. This graphene bridge eventually breaks and a nanoscopic gap is formed. Importantly, the junction conductance can be reversibly switched by almost six orders of magnitude during 1,000 opening-closing cycles; i.e. it acts as an electrical switch that can be turned on-off mechanically. The impressive mechanical stability allows for the collection of statistically significant data, capturing various behaviours of the junctions over time and in different environments (e.g. different molecule orientations, in air, vacuum, liquid).

 

In collaboration with the theory group led by Prof Jaime Ferrer at the University of Oviedo (Spain), the researchers also confirmed the interference of electron waves during measurements in air at room temperature. The findings are an important step for both fundamental physics and for future applications of graphene as an electromechanical switch or biosensing platform.

 

Electronic fingerprinting

The graphene MCBJ is a unique device that is on the one hand a model system for studying quantum transport at room temperature, and on the other can be a powerful sensing tool to probe biomolecules with very high resolution. The researchers are currently exploring the potential of this platform for electronic fingerprinting of biomolecules, including amino acids and short peptides: the aim is to discriminate molecules with slight chemical difference according to their electronic structure, which can be ‘read' when the molecules are trapped in the nanogap. This would provide the first steps into 'tunneling-based' biosensing with graphene, an compelling vision at the Departments of Quantum and Bionanoscience at TU Delft.

 

Hoe vindt u het als wij ook Engelstalige artikelen publiceren?

Stem hier

 

Gerelateerd nieuws

Wie helpt Nasa aan een sensor die Venus overleeft?

Wie helpt Nasa aan een sensor die Venus overleeft?

Venus is een vijandige omgeving voor zowat alles. Inclusief sondes. En hoewel Nasa denkt dat het Venus-resistente elektronica heeft, betekent dit nog niet dat toekomstige rovers klaar zijn om het helse oppervlak van de…

‘Gesensoriseerde huid’ helpt zachte robots hun omgeving te begrijpen

‘Gesensoriseerde huid’ helpt zachte robots hun omgeving te begrijpen

MIT-onderzoekers hebben een robotarm in staat gesteld zijn plek in de 3D-ruimte te begrijpen, alleen door beweging- en positiegegevens van zijn eigen ‘gesensoriseerde huid’ te gebruiken.

Publieksstemming Prins Friso Ingenieursprijs gestart

Nu stemmen voor Prins Friso Ingenieursprijs (video's)

De publieksstemming voor de Prins Friso Ingenieursprijs 2020 is gestart. De drie kanshebbers zijn: Bas Reedijk, Afdelingshoofd Water bij BAM Infraconsult, Erik Duisterwinkel, Innovator, data scientist & sensor expert…

Webshop

webshop

 

Gratis nieuwsbrief

EOL

 

Product van de maand

RSS
Semiflexibele printplaten (PCB)

Semiflexibele printplaten bestaan uit gespecialiseerde FR-4-materialen en worden gemaakt volgens een specifieke...

Focus op

ABB BV
ABB BV

Machineveiligheid, systemen en componenten

B&R Industriële Automatisering BV *
B&R Industriële Automatisering BV *

Perfection in Automation

Elobau Benelux BV *
Elobau Benelux BV *

creating sustainable solutions

Pilz Nederland
Pilz Nederland

Voor industriële (veilige) automatiseringsoplossingen

Ringspann Benelux BV
Ringspann Benelux BV

Partner in aandrijf- en opspantechniek

Rotero Holland BV
Rotero Holland BV

Stappenmotor - Servomotor - Elektro Magneet

Download gratis engineering boeken

A gratis boeken downloaden

 

Agenda

25 februari 2020, Neurenberg (DE)

Embedded World

Internationale vakbeurs voor embedded systemen

3 maart 2020, Den Bosch

High Speed and Radio frequency PCBs

Seminar about High Speed and Radio frequency PCBs

4 maart 2020, Veldhoven

RapidPro

Op weg naar de Digitale Productie

Meer agendapunten »