Objectief en gericht behandelen van patiënten met elektroceutica

Geplaatst op 17 mei 2018 om 14:32 uur
Objectief en gericht behandelen van patiënten met elektroceutica
Medici grijpen vaak naar farmaceutische middelen om een kwaal bij een patiënt te verhelpen. De elektronische tegenhanger werkt in sommige gevallen echter beter. Langzaam wint deze techniek terrein zoals bij behandelingen voor het syndroom van Tourette, epilepsie en oorsuizen. Elektroceutica, een medische toepassing van bio-elektronica. Klein, flexibel en intelligent.
Iedereen heeft wel eens een afbeelding van de hersenen bekeken. Wat daarbij opvalt is dat de structuur van de hersenen - voor de leek - vrijwel homogeen is. Je kunt geen duidelijk onderscheid maken tussen de  verschillende kwabben. Wel weten we dat die hersenkwabben elk verantwoordelijk zijn voor andere hersenfuncties. De frontale kwab helpt bij de verwerking van taal en spraak. De pariëtale kwab is betrokken bij cognitieve functies zoals rekenen en lezen en de kleinste kwab, de achterhoofdskwab, is betrokken bij zien.

 

Medicijnen kunnen het onderscheid tussen de kwabben ook niet altijd maken. Ze bieden daardoor een globaal effect. Alle kwabben worden tegelijkertijd en in dezelfde mate beïnvloed. Een groot nadeel als een aandoening zich op een specifieke plek en onverwacht moment manifesteert. Bio-elektronica biedt een uitkomst. Zeker nu wetenschappers steeds kleinere, flexibelere en intelligentere oplossingen bieden om elektroceutica tot een succes te maken.

 

Elektrochemische machine

In een volle zaal op de Hogeschool van Amsterdam bij de faculteit van Techniek vertelt professor Wouter Serdijn tijdens een lezing over medische toepassingen van de bio-elektronica. Studenten en docenten luisteren aandachtig naar de mogelijkheden die elektronica biedt voor behandelingen van het syndroom van Tourette, epilepsie en oorsuizen.

 

Simpel gezegd kun je de hersenen beschouwen als een elektrochemische machine. Dat betekent dat je een chemische interactie kunt aangaan, zoals met medicijnen. Maar je kunt ook contact maken met de hersenen door de elektrische interactie aan te gaan op de plek waar de aandoening zich manifesteert.

 

probe

 

Ziekte van Parkinson

"We moeten nog veel leren over de hersenen en over de interactie van elektriciteit met de hersenen of ander zenuwweefsel. Maar veel hersenaandoeningen zijn zeker succesvol te behandelen met elektriciteit", zegt professor Serdijn. "Een bijkomend voordeel is dat de toepassing instantaan werkt. Dat houdt in dat je het effect ziet zodra je de elektriciteit aanbiedt. De behandeling lijkt echter niet te zijn plaatsgevonden zodra er geen elektrische interactie is". Als voorbeeld toont hij een filmfragment over een man die lijdt aan Parkinson, een ziekte die de aansturing van de spieren aantast. Zijn handen trillen zo hevig dat hij niet in staat is om een telefoonnummer in te toetsen of om zichzelf te scheren.

 

"Er zijn meerdere elektroden-arrays in zijn hoofd aangebracht met metaaloppervlakken die een overschot of een tekort aan elektronen aanbieden die de ionen in het hersenweefsel aantrekken of afstoten. Daardoor bouwt een lading op waarmee je hersencellen kunt verleiden om gewenste activiteit te vertonen of om een ongewenste activiteit te onderdrukken".

 

Elektrotechnisch gezien een relatief eenvoudige toepassing. De elektroden kun je zien als stekkers in de hersenen via draden verbonden met elektronica van een implementeerbare pulsgenerator in de borst. Op regelmatige momenten zendt de generator zeer voorspelbare pulsen naar de hersenen. Het filmfragment toont een zeer duidelijk gunstig effect in de fijne motoriek van de man. Tot de generator weer wordt uitgeschakeld.

 

hoofd

 

b

 

Was het maar zo simpel. De hersenen laten zich echter niet zomaar sturen. Ze krijgen de kunstmatige beïnvloeding door. Ze maken zich hier ongevoelig voor door de synaptische weegfactoren aan te passen en nieuwe neurale paden aan te leggen. Als reactie kan de arts eigenlijk alleen maar de intensiteit opschroeven of anders doseren.

 

Miniaturisering

"We weten dat het werkt met relatief eenvoudige micro-elektronica. Daarbij bepaalt vooral de batterij de afmeting van het implantaat. Deze heeft twee functies; de elektronica voeden en het hersenweefsel via de elektronica voorzien van de juiste pakketjes elektrische lading. We streven naar een energiezuinig ontwerp van een klein en flexibel implantaat dat in zijn geheel in het hoofd bij de hersenen past. Dus zonder oncomfortabele, aan de huid vastklevende draden en titanium behuizing in de borst".  

 

mini

Overbodige componenten

Als je kijkt naar de huidige implantaten dan vraagt de elektronica voor de gewenste functies verschillende spanningsniveaus. Daar zijn discrete componenten voor nodig waar je eigenlijk geen ruimte voor hebt. De groep van Serdijn werkt er daarom hard aan om alles in een implantaat te laten werken op één enkel spanningsdomein.

 

Ook heeft de groep in simulaties en experimenten aangetoond dat de vaak toegepaste koppelcondensatoren niet nodig zijn om de apparaten veilig te maken. Sterker nog, ze hebben een ongunstig effect waardoor lading in het weefsel opbouwt. Gelukkig zijn er andere efficiëntere methoden om ze te vervangen.

 

Intelligenter

"We willen het implantaat niet alleen kleiner maar ook intelligenter maken. Om rekening te houden met het lerend effect van de hersenen en om de patiënt in zijn therapeutische behoefte te voorzien.

Een groot bijkomend voordeel van het laatste is dat het implantaat een objectieve en exacte analyse kan uitvoeren. Want hoe weet je dat iets werkt? Dat moet je meestal aan de patiënt vragen. Maar je kunt je voorstellen dat zijn antwoorden door emoties niet altijd objectief zijn".  

 

Veiligheid

Hacken van medische apparatuur is momenteel nog vrij gemakkelijk. Fabrikanten hebben er simpelweg te weinig aandacht aan besteed. Maar we moeten oppassen met het beperken van toegang voor bijvoorbeeld alleen jezelf, je cardioloog of je neuroloog. "Wat als je ergens bewusteloos op de grond ligt? Dan zou het fijn zijn dat een ambulancemedewerker er ook bij kan. Gelukkig zijn daar slimme oplossingen voor bedacht bij de afdeling Neurowetenschappen van het Erasmus Medisch Centrum waar we nauw mee samenwerken. Zoals de hulpverlener die hetzelfde hartritme  kan aantonen als het implantaat meet. Dan is er een match".

 

Bio-elektrische medicijn

Zijn we er dan, als het lukt om toepassingen op deze wijze kleiner, flexibeler en slimmer te maken? "Nee", zegt Serdijn. "Er doen zich nieuwe ontwikkelingen voor waar we zelf ook onderzoek naar doen. Het kan nog kleiner, het bio-elektrische medicijn".

 

Kleine medische apparaatjes die zeer lokaal ‘praten' met zenuwweefsel tussen organen en de hersenen. Het implantaat verbetert de aansturing van de organen door de hersenen als dat niet helemaal goed gaat, zoals bij reumatische artritis, astma en diabetes type 2. Het implantaat monitort en overschrijft de code van de hersenen als deze niet juist is.

 

Voor deze implantaten gelden nog strengere eisen dan de toepassingen hiervoor beschreven. Het moet levenslang meegaan, de behuizing mag geen schade toebrengen aan (de gezonde) zenuwbaan en het moet natuurlijk veilig zijn. Discrete componenten kun je bij deze afmeting nagenoeg niet toepassen. Dus ook geen batterij. Maar wat dan wel?

 

Een neurostimulator is nog te voeden door een inductieve koppeling. Bijvoorbeeld door een soort oplaad-spoel op je borst te plaatsen. Dat is geen optie voor zo'n klein implantaat diep in het lichaam. Er komt maar weinig energie ter plekke aan. "Op de TU Delft hebben we een chip ontworpen die gebruik maakt van het Seebeck effect om temperatuurverschillen om te zetten in bruikbare elektriciteit. Dit werkt echter niet diep in het lichaam en bij de hersenen waar de temperatuur nagenoeg constant is. Kinetische energie omzetten door elementjes die gaan resoneren bij een beweging? Dit levert in de orde van 10 microwatt op wat toereikend zou zijn voor een implantaat. Maar toch verre van praktisch om een patiënt regelmatig te vragen om op één vaste  frequentie te bewegen of erger, om de chip in je hoofd te voeden door te headbangen..."

 

Omzetten van glucose of gebruik maken van het metabolisme in ons lichaam dan? "Allebei in theorie een optie maar het meest kansrijk lijkt het inbrengen van een energieomzetter in het lichaam waarbij de energie ultrasoon wordt aangeboden aan het implantaat. Dat kunnen we vrij goed richten en het lijkt erop dat het lichaam deze golven minder absorbeert dan elektromagnetische golven. Dus een hoger rendement".

 

De toekomst

Volgens Serdijn zullen we deze eeuw heel veel te weten komen over onze hersenen en de interactie die we ermee kunnen aangaan. "We zijn er nog niet. Maar waar farmaceutica ons tot op heden ver heeft geholpen, bieden elektroceutica en het bio-elektrische medicijn behandelingen voor de 21e eeuw".

 

Dit artikel is gebaseerd op de presentatie ‘Beter worden met elektroceutica - Bioelectric Medicine to the rescue' gegeven door prof. dr. ir. Wouter Serdijn, hoogleraar bio-elektronica aan de Technische Unversiteit Delft.

 
© Engineersonline.nl